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Macromolecular crystal structure determination has typically

been a two-step process. When diffraction data from multiple

chemically isomorphous or anomalously scattering crystals are

available, the positions of heavy atoms from amplitude

differences arising from native–derivative crystal pairs or an

anomalously scattering crystal are first located and phasing of

the whole protein structure is then completed using the heavy-

atom substructure as a bootstrap. Shake-and-Bake, a direct-

methods-based dual-space refinement procedure, provides

heavy-atom substructure solutions by finding the constrained

global minimum of a probabilistically defined minimal

function. This minimal function relies on probabilistic

estimates of the cosines of the structure invariants. A novel

statistically defined minimal function that utilizes the statis-

tical properties of the structure invariants has recently been

proposed and tested. Applications of the statistical Shake-and-

Bake procedure show that statistical direct methods provide a

simple, reliable and efficient method of heavy-atom substruc-

ture determination.
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1. Introduction

The phase problem of X-ray crystallography is defined as the

problem of determining the phases, ’, of the structure factors,

F = |F |exp(i’), from measurements of intensities alone. The

phase information, which is lost in the diffraction experiment,

is in fact recoverable from the measurable intensities. The

methods devised to achieve this goal are known as direct

methods, a class of ab initio methods in which probabilistic

phase relations are used to derive reflection phases. Examples

of successful direct methods include the tangent formula

(Karle & Hauptman, 1956), the minimal principle (Debaer-

demaeker & Woolfson, 1983; DeTitta et al., 1994) and the

maximum-entropy (Bricogne, 1984) and the minimal charge

(Elser, 1999) methods.

The beginnings of the mathematical direct-methods theory

of crystallographic phasing were the discoveries of three

fundamental relationships: (i) the discovery by Harker &

Kasper (1948) that owing to the non-negativity of the

electron-density distribution in a crystal there are inequality

relationships among X-ray structure factors of centrosym-

metric crystals, (ii) the discovery by Karle & Hauptman (1950)

that the necessary and sufficient condition for non-negative

electron density is a determinantal structure-factor relation-

ship from which all the inequalities derive, including those of

Harker and Kasper, and (iii) the discovery by Sayre (1952) of

the Fourier transform convolution relationship among triplets

of structure factors, FH, F�K and FK�H, for crystals composed

of resolved equal atoms. Tremendous progress in the field of

direct methods has been made over the last half century.



Direct methods, as implemented in widely used highly auto-

mated computer programs such as MULTAN (Main et al.,

1980), SAYTAN (Debaerdemaeker et al., 1985), SIR (Burla et

al., 1989) and SHELXS (Sheldrick, 1990), provide computa-

tionally efficient solutions for structures containing fewer than

100 independent non-H atoms.

The development of a dual-space recycling procedure

known as Shake-and-Bake (Miller et al., 1993; DeTitta et al.,

1994; Weeks et al., 1994) has dramatically increased the size of

structures solvable by direct methods. Shake-and-Bake, the

first algorithm to find the constrained global minimum of a

probabilistically defined minimal function, alternates phase

refinement in reciprocal space with density modification in

real space to impose constraints through a physically mean-

ingful interpretation of the electron-density function. Bench-

mark achievements of Shake-and-Bake include ab initio

phasing of atomic resolution X-ray data from triclinic crystals

of hen egg-white lysozyme, a protein composed of 1001

independent non-H atoms with no atom heavier than sulfur

(Deacon et al., 1998), and ab initio determination from single-

wavelength anomalous dispersion X-ray data of the 160-atom

selenium substructure in SeMet Escherichia coli ketopantoate

hydroxymethyl transferase crystals, which contain two deca-

mers of 26 kDa monomers in their asymmetric unit (von Delft

et al., 2003). These two benchmarks demonstrate that direct

methods are useful for larger molecules (more than 250

independent non-H atoms) and unique to the macromolecular

field when combined with anomalous dispersion measure-

ments or multiple diffraction patterns that include single

isomorphous replacement (SIR), single-wavelength anom-

alous scattering (SAS) and multi-wavelength anomalous

dispersion (MAD). The widely used Shake-and-Bake algo-

rithm has been implemented in SnB (Miller et al., 1994; Weeks

& Miller, 1999) and BnP (Weeks et al., 2002) software and

adapted in the SHELXC/D/E (Sheldrick, 2006) and PHENIX

(Adams, 2006) software.

2. Probabilistic approach to the crystallographic phase
problem

For a given reciprocal-lattice vector H, the normalized struc-

ture factor EH is defined by

EH ¼ jEHj expði’HÞ ¼ FH=hjFHj
2
i

1=2

¼ ��1=2
2

PN
j¼1

fj expð2�iH � rjÞ; ð1Þ

where N is the number of atoms in the unit cell, fj and rj are the

scattering factor and the position vector of the jth atom and

�2 =
PN

j¼1 f 2
j . Certain linear combinations of the phases, the

structure invariants, are uniquely determined by the structure

and are independent of the choice of the origin (Hauptman &

Karle, 1953). The most important of these invariants are the

triplets

’HK ¼ ’H þ ’K þ ’�H�K; ð2Þ

along with their associated parameters AHK, defined in the

equal-atom case by

AHK ¼ 2N�1=2jEHEKEHþKj: ð3Þ

The probabilistic approach to the phase problem assumes that

the atomic position vectors r of the atoms in a crystal are

random variables that are uniformly and independently

distributed in the unit cell. Based on this simple assumption,

the modern probabilistic theory provides the machinery to

derive the conditional probability distribution of the structure

invariants, given well defined sets of measured intensities,

Pð’jAHKÞ ¼ ½2�I0ðAHKÞ�
�1 expðAHK cos ’Þ; ð4Þ

where I0 is the modified Bessel function of zeroth order. From

(4), one immediately obtains the estimate

’HK ¼ ’H þ ’K þ ’�H�K ’ 0; ð5Þ

as long as the values of AHK are large.

2.1. The tangent formula

The first application of the probabilistic approach to the

phase problem is the tangent formula (Karle & Hauptman,

1956),

tanð’HÞ ¼

P
K

WHK sinð’K þ ’H�KÞP
K

WHK cosð’K þ ’H�KÞ
; ð6Þ

where WHK are appropriate weights (e.g. WHK = |EKEH�K| or

AHK). The tangent formula, together with its modified forms,

represents the earliest development of the probabilistic

approach to the phase problem and demonstrates the power of

probabilistic methods on which the direct methods of phase

determination are primarily based.

2.2. The minimal principle

From (4), one also obtains the conditional expected value of

cos’ given AHK,

hcos ’jAHKi ¼ I1ðAHKÞ=I0ðAHKÞ; ð7Þ

where I1/I0 is the ratio of the modified Bessel functions of the

first and zeroth order (Cochran, 1955). The crystallographic

phase problem can be formulated as a problem in constrained

global minimization. The commonly used cosine minimal

function (DeTitta et al., 1994),

Rð’Þ ¼
P
H;K

AHK

� ��1P
H;K

AHK cosð’HKÞ �
I1ðAHKÞ

I0ðAHKÞ

� �2

; ð8Þ

measures the least-squares difference between the current

values of the cosine structure invariants, cos’HK, and their

conditional expected values. It is expected that the minimal

function (8) reaches its constrained global minimum when all

the phases are equal to their true values for any choice of

origin and enantiomorph (the minimal principle).

The successful application of the probabilistic approach to

the crystallographic phase problem depends on the radius of

convergence of the minimal function and requires a sufficient
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number of reliable estimates of the cosine values of the

structure invariants, i.e. a sufficient number of triplets having

large AHK = 2N�1/2|EHEKEH+K| values. Unfortunately, the

average value of AHK decreases as the number of atoms (N)

increases or the data resolution is reduced (i.e. fewer reflec-

tions having |E| > 1). Table 1 shows the percentage of structure

invariants having non-negative cos(’HK) values for an

84-atom structure, Iled (Pletnev et al., 1980), and a 1001-atom

structure, Trilys (Deacon et al., 1998), using data truncated

from an original resolution of 0.94 Å for Iled and 0.85 Å for

Trilys to various resolutions of 1.0, 1.1, . . . , 1.6 Å. For each

resolution limit, 10N reflections having the largest |E| values

are selected to generate 100N structure invariants having the

largest A values. Table 1 shows that (i) the percentage drops

monotonically from 78.0 to 62.8% for Iled and from 67.1 to

58.0% for Trilys when data resolution is reduced from 1.0 to

1.6 Å and (ii) the percentages for Trilys (large structure) are

significantly lower than those for Iled (small structure). Owing

to the fact that the conditional expected values of cos(’HK)

are always positive, the large error involved in the minimal

function (8) may severely reduce the radius of convergence

and increase the difficulty of reaching the constrained global

minimum. When errors produced by unreliable estimates for

cos(’HK) reach a certain value, the minimal principle may no

longer be valid, and even if it is, the radius of convergence of

the Shake-and-Bake algorithm may be so small that the

method fails in practice. This may explain why direct methods

are limited with respect to structural size and data resolution.

3. Statistical approach to the crystallographic phase
problem

We proposed a novel statistical approach to the crystallo-

graphic phase problem (Xu & Hauptman, 2004). In our

approach, the statistical properties of the structure invariants

were used to generate a statistically based minimal function.

The statistical properties were observed from a variety of

known structures consisting of centrosymmetric, non-centro-

symmetric structures and Se-atom substructures with different

sizes, resolutions and space groups. From distributions of

triplets having true and random invariant values, we observed

that the triplet distribution of the true invariant values was

significantly higher than that of the random invariant values

over a (statistical) interval I = [�r, r], where r < �.

3.1. Statistical minimal function

These statistical properties motivated us to define a statis-

tically based minimal function

mð’Þ ¼ 1�
Rr
�r

Dð’Þ d’ ¼ 1� NI=NT; ð9Þ

where r < � is chosen arbitrarily, D(’) is the triplet distribution

on [��, �], NT is the total number of triplets and NI is the

number of triplets whose values lie within I = [�r, r]. Note that

the value of NI depends on the values of all selected phases.

Thus, when an individual phase value changes, the values of all

triplets associated with this phase will change and therefore

the value of NI will also change. It is obvious that the values of

the statistical minimal function depend on the choice of the

interval I = [�r, r]. It has been confirmed experimentally that

with a proper choice of the statistical interval, the statistical

minimal function reaches its constrained global minimum

when all phases are equal to their true values for any choice of

origin and enantiomorph (the statistical minimal principle).

3.2. Statistical Shake-and-Bake

It is one thing to formulate the phase problem as a problem

of constrained global minimization; it is quite another to

actually find the constrained global minimum. Shake-and-

Bake (Miller et al., 1993; DeTitta et al., 1994; Weeks et al.,

1994), the most powerful direct-methods-based procedure yet

devised, is the first algorithm to find the constrained global

minimum of a probabilistically defined minimal function. The

Shake-and-Bake procedure starts from random atomic struc-

tures and iterates cycles that alternate phase refinement in

reciprocal space, based on the technique of parameter shift

(Bhuiya & Stanley, 1963) to reduce the value of the minimal

function, with density modification by atomic peak picking in

real space. The Shake-and-Bake algorithm has been imple-

mented in the computer program SnB (Weeks & Miller, 1999).

Statistical Shake-and-Bake is a modification of Shake-and-

Bake obtained by replacing the cosine minimal function (8) by

the statistical minimal function (9). Statistical Shake-and-Bake

has been implemented in the computer program S-SnB.

3.3. Applications for substructure determination

As successful direct-methods applications have utilized

anomalous dispersion measurements or multiple diffraction

patterns (SIR, SAS and MAD) to determine heavy-atom

substructures, 19 known SeMet substructures ranging in size

from five to 70 Se sites in the asymmetric unit were used as test

structures (Xu et al., 2005). Both SnB and S-SnB programs

were executed using difference data from the test structures to

obtain success rates (percentage of trial structures that

converge to the solution). The resultant success rates were

reported in the form x � �(x), where �(x) is the standard

deviation of x, and were used for comparison and for opti-

mization of the statistical interval.
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Table 1
Percentage of structure invariants having non-negative cos (’HK) values
for the structures Iled and Trilys.

Data were truncated to various resolutions.

Structure Iled Trilys

Atoms 84 1001
Reflections 840 10010
Invariants 8400 100100
1.0 Å 78.0% 67.1%
1.1 Å 74.3% 65.1%
1.2 Å 70.5% 62.4%
1.3 Å 68.0% 60.9%
1.4 Å 66.7% 59.7%
1.5 Å 65.0% 58.9%
1.6 Å 62.8% 58.0%



Based on the test results from S-SnB (Xu et al., 2005), we

suggested two strategies for selecting the default statistical

interval: (i) the conservative interval I = [�90, 90�] and (ii) the

aggressive interval I = [�r, r], with r = 9.14ln(N) + 55.3�,

where N is the number of Se atoms in the asymmetric unit. The

advantage of using a conservative interval is that one fixed

interval can be used to determine substructures of any size

with reasonably high success rates. The disadvantage is the

loss of higher success rates for small and medium substruc-

tures (5–35 Se atoms). On the other hand, the advantage of

using an aggressive interval is the potential for yielding

maximal success rates for small structures. The results also

suggested that a large interval, I = [�r, r] with r > 90�, may be

needed to determine vary large substructures (�100).

When comparing two success rates (x and y) obtained from

two different procedures, y is statistically higher than x if

y � x + 2�(|y � x|), where �(|y � x|) = [�2(x) + �2(y)]1/2; y is

statistically lower than x if y � x � 2�(|y � x|); otherwise y is

statistically equivalent to x. When compared with SnB using 38

dispersive or anomalous difference data sets from 19 test

structures, S-SnB with the conservative interval yielded 11

statistically higher and only one statistically lower success

rates, while S-SnB with the aggresive interval yielded 19

statistically higher and only one statistically lower success

rates.

4. Conclusion

The results described above confirm that statistical Shake-and-

Bake is more powerful than traditional Shake-and-Bake for

the determination of Se-atom substructures. Consequently, the

statistical Shake-and-Bake procedure has been implemented

as the default method in the latest versions of the computer

programs SnB and BnP. These programs can be downloaded

from the websites http://www.hwi.buffalo.edu/SnB/ or http://

www.hwi.buffalo.edu/BnP/, respectively.

Research support from NIH grants EB002057 and GM-

72023 is gratefully acknowledged.
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